

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 223 (2004) 259-262

www.elsevier.com/locate/molcata

Oxidative conversion of ethane to ethylene over supported SrO-promoted Er₂O₃ catalyst

S.A.R. Mulla*, V.R. Choudhary

Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008, India

Received 8 May 2003; received in revised form 7 January 2004; accepted 15 January 2004 Available online 25 September 2004

Abstract

Oxidative conversion of ethane to ethylene over a SrO-promoted Er_2O_3 supported on low-surface area macroporous silica–alumina commercial catalyst carrier (SA5205, obtained from Norton Co., USA) in presence of steam (steam/C₂H₆ mole ratio = 1.0) and limited O₂ (C₂H₆/O₂ mole ratio \geq 4.0) has been thoroughly investigated. Influence of different process parameters such as temperature (700–850 °C), C₂H₆/O₂ feed ratio (4.0–8.0) and space velocity (50, 000–200, 000 cm³ g⁻¹ h⁻¹) on the conversion of ethane and product selectivity in the process has been studied. High selectivity (\geq 80%) of C₂₊ olefins at 50–70% conversion of ethane could be obtained at very low contact time without coke deposition on the catalyst at 800–850 °C.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Ethane; Ethylene; Oxidative dehydrogenation; SrO-promoted Er2O3

1. Introduction

Oxidative conversion of ethane to ethylene in presence of catalyst is futuristic process of great practical importance. Ethylene is a keystone to petrochemical industry, and is produced commercially from ethane, ethane-propane mixture or naphtha by their thermal cracking in the presence of steam [1]. However, this conventional process is highly endothermic, energy intensive and also involves extensive coke formation. The large amount of coke deposits on the inner walls of tubular cracking reactor because of which the heat transfer from the reactor walls is reduced, requiring higher wall temperature (upto $1100 \,^{\circ}$ C). This consequently requires more energy, reduces the life of reactor tubes and also needs the process shutdown for physical removal of the coke. In order to overcome these problems associated with conventional process, worldwide efforts have been made by many for oxidative conversion of ethane to ethylene, using alkali metal-containing

* Corresponding author. Tel.: +91 20 25893300 ext. 2316/2345; fax: +91 20 25893359.

E-mail address: sarmulla@pd.ncl.res.in (S.A.R. Mulla).

catalysts [2-8] and alkaline earth metal-promoted La₂O₃ [9-12] or other rare earth oxide [13] catalysts. The alkali metal-containing catalysts have poor thermal/hydrothermal stability because of the presence of low melting or volatile active components. However, alkaline earth-metal promoted catalysts have no such problem. Since oxidative conversion of ethane is exothermic and also involves formation of water, there is a need to develop a catalyst, which not only is active and selective but also has high thermal and hydrothermal stability. High mechanical strength is a basic requirement of any commercial catalyst. This could be achieved by supporting the catalyst on a porous catalyst carrier having high mechanical strength and high thermal/hydrothermal stability. In this investigation a supported SrO-promoted Er₂O₃ catalyst satisfying the above requirements and also operating at very low contact time in the process has been reported.

2. Experimental

The supported catalyst [SrO $(11.6 \text{ wt.\%})/\text{Er}_2O_3$ (15.6 wt.%)/SA-5205] was prepared by impregnating a commer-

^{1381-1169/\$ –} see front matter 0 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2004.01.028

cial catalyst support SA-5205 (obtained from Norton Co., USA), crushed to 22–30 mesh size particles, first by erbium nitrate (GR LOBA) and then with strontium nitrate (extra pure, LOBA) by using the incipient wetness technique [14]. After each impregnation, the resulting particles were dried at 90 °C for 16 h and then calcined in static air at 900 °C for 4 h. SA-5205 is an inert macro-porous (porosity: 50%) catalyst carrier, having a low-surface area (<0.01 m² g⁻¹) and it consists mainly of Al₂O₃ (86.1 wt.%) and SiO₂ (11.8 wt.%).

The oxidative conversion of ethane to ethylene reaction was carried out over the catalyst at atmospheric pressure in a continuous-flow quartz tubular reactor having low dead volume, described elsewhere [15], at different temperatures $(700-850 \degree C)$, C₂H₆/O₂ feed ratios (4.0-8.0) and gas hourly space velocities $(50,000-200, 000 \text{ cm}^3 \text{ g}^{-1} \text{ h}^{-1})$ in the presence of steam (steam/ C_2H_6 mole ratio = 1.0). The feed consisted of mixture of pure ethane, oxygen and steam; no feed diluent was used. The space velocity was calculated at 0°C and one atmosphere pressure. The reaction temperature was measured by a Chromel-Alumel thermocouple located in the catalyst bed. The reactor effluent gases, after the removal of water by condensation at 0 °C were analyzed by an online gas chromatograph with TCD detectors using Poropak-Q and Spherocarb columns. The selectivity for C_2H_4 and C_{2+} olefins is defined as:

Selectivity for C_2H_4 and C_{2+} olefins (%) = (mole of ethane converted to ethylene and other olefins /moles of ethane converted to all the products) \times 100.

3. Results and discussion

Results showing the effect of various process parameters such as temperature (700–850 °C), C_2H_6/O_2 feed ratio (4.0–8.0) and space velocity (GHSV = 50,000–200, 000 cm³g⁻¹h⁻¹) on the conversion of ethane and oxygen, product selectivity (for C_2H_4 , C_{2+} olefins, C_{3+} paraffins, CH₄ and CO_x) and CO/CO₂ product ratio in the process are presented in Figs. 1–3. No coke deposition was observed on the catalyst for all the process conditions.

3.1. Influence of temperature

The results in Fig. 1 show a strong influence of temperature on the conversion of C_2H_6 and O_2 , selectivity for C_2H_4 , C_{2+} olefins, CH_4 , C_{3+} paraffins, CO_x and the CO/CO₂ product ratio, as follows. With the increase in the reaction temperature:

- the conversion of C₂H₆ and O₂ is increased as expected.
- the selectivity for C₂H₄, C₂₊ olefins and CH₄ is increased, however, the selectivity for C₃₊ paraffins and CO_x is decreased.
- the CO/CO₂ ratio is increased, which shows the occurrence of homogeneous reactions in which the formation of CO is favored over CO₂ more predominantly.

Fig. 1. Influence of temperature on the conversion of ethane and O_2 , product selectivity and CO/CO₂ ratio in the oxidative conversion of ethane to ethylene over supported Sr-promoted Er_2O_3 catalyst [reaction condition: $C_2H_6/O_2 = 6.0$, steam/ $C_2H_6 = 1.0$, space velocity = 100,000 cm³ g⁻¹ h⁻¹].

3.2. Influence of C_2H_6/O_2 ratio

Fig. 2 shows a strong influence of C_2H_6/O_2 feed ratio on the process performance. With increase in the C_2H_6/O_2 feed ratio, the process performance was influenced as follows.

- The conversion of C₂H₆ and O₂ is decreased, however, the decrease in O₂ conversion is very small.
- The selectivity for C_2H_4 and C_{2+} olefins is increased but the selectivity for CO_x and selectivity for CH_4 is decreased. However, the change in the selectivity for C_{3+} paraffins is very small.
- The CO/CO₂ ratio is increased, since O₂ is available at lower and lower concentrations.

3.3. Influence of space velocity

The influence of space velocity on the process performance (at 850 °C) is shown in Fig. 3. The increase in the space velocity (from 50,000 to 200,000 cm³g⁻¹h⁻¹) results in:

- a decrease in the conversion of reactants C₂H₆ and O₂ as expected. However, the decrease in the O₂ conversion is very small.
- a increase in the selectivity for C_2H_4 , C_{2+} olefins and C_{3+} paraffins but a decrease in the selectivity for CH_4 and CO_x , and
- a large increase in the CO/CO₂ ratio.

Fig. 2. Influence of C_2H_6/O_2 feed ratio on the conversion of ethane and O_2 , product selectivity and CO/CO₂ ratio in the oxidative conversion of ethane to ethylene over supported Sr-promoted Er_2O_3 catalyst [reaction condition: temperature = $850 \,^{\circ}$ C, steam/ C_2H_6 = 1.0, space velocity = $100,000 \, \text{cm}^3 \, \text{g}^{-1} \, \text{h}^{-1}$].

Fig. 3. Influence of space velocity on the conversion of ethane and O_2 , product selectivity and CO/CO_2 ratio in the oxidative conversion of ethane to ethylene over supported Sr-promoted Er_2O_3 catalyst [reaction condition: temperature = $850 \circ C$, $C_2H_6/O_2 = 6.0$, steam/ $C_2H_6 = 1.0$].

The process is expected to involve a complex network of both heterogeneous and homogeneous reactions such as catalytic and non-catalytic oxidative conversion of ethane reactions (exothermic) and thermal cracking of ethane (endothermic) reactions in the presence of limited O_2 at the high temperature (\geq 700 °C), as discussed earlier [9]. The catalytic reactions are more predominant at the lower temperatures (below 750 °C). At the higher temperatures (above 750 °C), the homogeneous reactions also become increasingly important. The homogeneous reactions are simultaneously occurring with heterogeneous reactions. In order to reduce the contribution due to the homogeneous reaction, low dead volume reactor packed with inert support was used.

Our earlier studies on non-catalytic oxidative conversion of ethane to ethylene in the presence of limited O_2 [16] showed that because of the activation of ethane by molecular oxygen cracking ethyl radicals and their subsequent decomposition to ethylene [reactions 1 and 2 given below], the conversion of ethane purely by its thermal cracking is drastically increased.

$$C_2H_6 + O_2 \rightarrow C_2H_5 + HO_2$$
 (homogeneous reaction) (1)

 $C_2H_5 \rightarrow C_2H_4 + H$ (homogeneous reaction) (2)

Ethane is expected to be activated on the catalyst surface by the surface oxygen as follows.

$$C_2H_6 + [O]_s \rightarrow C_2H_5 + [HO]_s$$
 (surface reaction) (3)

and the [O], sites are regenerated by the dehydration reaction,

$$2[OH] \rightarrow [O]_s + H_2O$$
 (surface reaction) (4)

3.4. Influence of catalyst support

The support provides not only better dispersion but also a high mechanically strength and thermally/hydro thermally stable porous matrix for the catalyst for practical use in the high temperature process. The particles or pellets of the catalyst without the support undergo disintegration into smaller pieces or powder causing an unacceptable larger pressure drop across the catalyst bed in the reactor, when exposed to humid atmospheres. The supported SrO-promoted Er_2O_3 showed better performance (higher ethane conversion, activity and selectivity for the C_{2+} olefins) than the unsupported catalyst in the process [13].

4. Conclusions

The high ethane conversion (50–70%) and high ethylene selectivity (\geq 80%) in the process can be obtained at very high space velocity (as high as 200, 000 cm³ g⁻¹ h⁻¹) without formation of coke using the supported SrO-promoted Er₂O₃ catalyst.

The mechanical strength as well as the surface area and the C_{2+} olefin selectivity [in the high temperature (>700 °C) oxidative conversion of ethane to ethylene in presence of limited O₂] of SrO-promoted Er₂O₃ catalyst are increased significantly because of supporting the catalyst on the lowsurface area macro-porous silica–alumina catalyst carrier.

References

- L. Kniel, O. Winter, K. Stork, Ethylene: Keystone to the Petrochemical Industry, Marcel Dekker Inc., New York, 1980.
- [2] R. Burch, E.M. Crabb, Appl. Catal. 97 (1993) 49.
- [3] S.J. Conway, J.H. Lunsford, J. Catal. 131 (1991) 513.
- [4] A. Argent, P. Harris, J. Chem Soc. Chem. Commun. (1986) 1058.
- [5] M. Huff, L.D. Schmidt, J. Phy. Chem. 97 (1993) 11815.

- [6] H.M. Swaan, A. Toebes, K. Seshan, J.G. van Ommen, J.R.H. Ross, Catal. Today 13 (1992) 629.
- [7] E.M. Kennedy, N.W. Cant, Appl. Catal. 75 (1991) 321.
- [8] O. Desponds, R.L. Keiski, G.A. Somorjai, Catal. Lett. 19 (1993) 17.
- [9] V.R. Choudhary, B.S. Uphade, S.A.R. Mulla, Angew. Chem. Int. Ed. Engl. 34 (1995) 665.
- [10] V.R. Choudhary, S.A.R. Mulla, V.H. Rane, Appl. Eng. 66 (2000) 51.
- [11] V.R. Choudhary, S.A.R. Mulla, Appl. Eng. 68 (2001) 377.
- [12] S.A.R. Mulla, B.S. Uphade, V.R. Choudhary, Stud. Surf. Sci. Catal. 113 (1998) 1023.
- [13] V.R. Choudhary, S.A.R. Mulla, V.H. Rane, J. Chem. Technol. Biotechnol. 71 (1998) 167.
- [14] C.N. Satterfield, In Heterogeneous Catalysis in Industrial Practice, second ed., McGraw-Hill Inc., New York, 1993.
- [15] V.R. Choudhary, S.A.R. Mulla, A.M. Rajput, Ind. Eng. Chem. Res. 36 (1997) 2075.
- [16] V.R. Choudhary, S.A.R. Mulla, AIChE J. 43 (1997) 1545.